Emergence delirium in children

R2 Thidarat Lertwacha R2 Saowaluk Sotananan Advisor Taniga Kiatchai

Definition

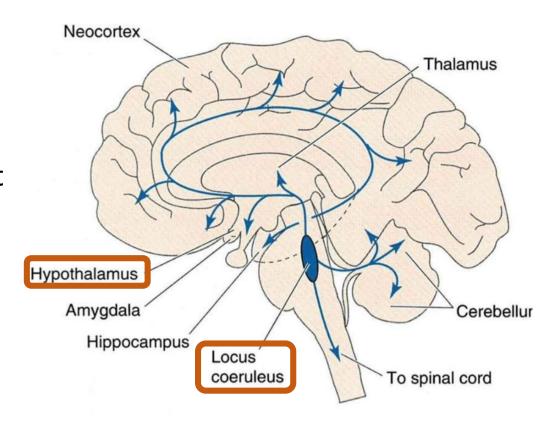

"A disturbance in a child's awareness or attention to his/her environment with disorientation and perceptual alterations including hypersensitivity to stimuli and hyperactive motor behavior in the immediate post anesthesia period"

- Eckenhoff and colleagues in 1960s

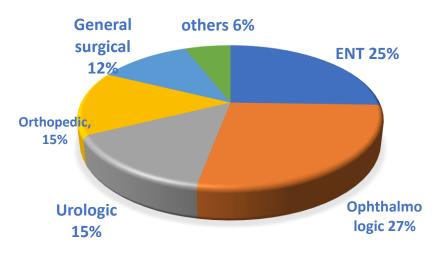
• Smessaert and Eckenhoff describe postanesthetic excitement. 1960 Sevoflurane introduced in Japan 1990 • Post operative agitation first described with Sevoflurane in Japan. 1991 • FDA approves Sevoflurane in United States 1995 Welborn and Lerman in United States report emergence agitation with Sevoflurane. 1996 Voepel-Lewis describes 18% incidence of emergence agitation in children 3–7 years old which can last an average of 14 minutes. 2003 • The PAED scale presented for children greater than 2 years age 2004

Incidence

20-30% incidence of ED in children 3-7 years old



Lee, J Perioper Crit Intensive Care Nurs 2018, 4:1


Causes

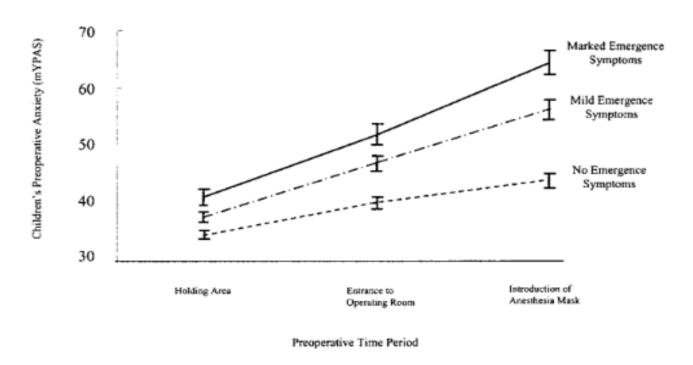
- Remains unknown
- Various theories suggest that from the immature nervous system

Risk factors

- Volatile anesthesia
- Preschool children
- Male

(Terri Voepel-Lewis Anesth Analg 2003;96:1625–30)

- Otorhinolaryngology and ophthalmology procedure
- Preoperative anxiety
- Child temperament
- Parental anxiety


Preoperative Anxiety and Emergence Delirium and Postoperative Maladaptive Behaviors

Zeev N. Kain, MD, MBA, Alison A. Caldwell-Andrews, PhD, Inna Maranets, MD, Brenda McClain, MD, Dorothy Gaal, MD, Linda C. Mayes, MD, Rui Feng, MS, and Heping Zhang, PhD

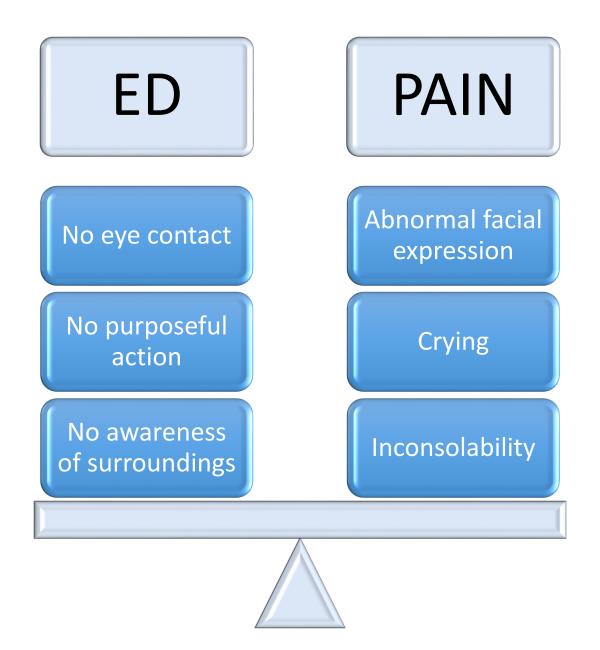
The Center for the Advancement of Perioperative Health, and the Departments of Anesthesiology, Pediatrics, and Child and Adolescent Psychiatry, Yale University School of Medicine, Department of Epidemiology, School of Public Health, Yale University, New Haven, Connecticut

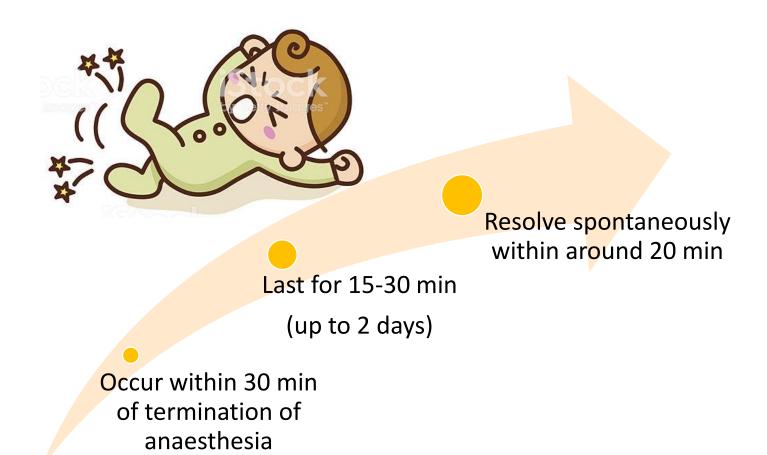
- Included 8 Prospective studies related to
 - Preoperative anxiety
 - Emergence status
 - Postoperative behavioral changes over the past 6 years
- ➤ Children with a physical class of ASA I—II, undergoing surgery with general anesthesia

Results

Figure 2. Relationship between preoperative anxiety and emergence delirium symptoms. mYPAS = modified Yale Preoperative Anxiety Scale

ED were increased by approximately 10% as a result of an increment of 10 points in the mYPAS(95% CI1.0017– 1.0171, P=0.0168)

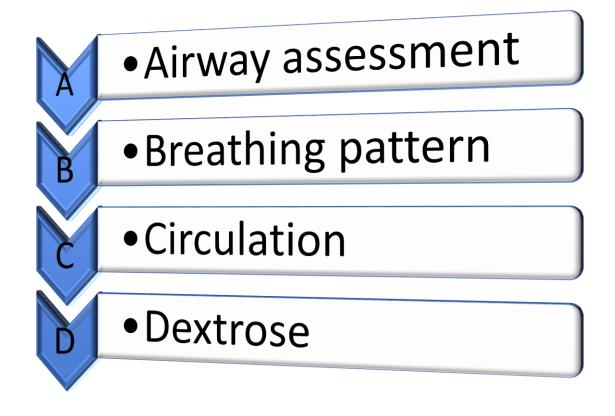

Clinical presentations


Non-purposeful movement Failing to make eye contact

Kicking

Inconsolable demeanor

Thrusting their head backward



Clinical approach

Ensure their safety

- Placing pillows
- Padded boards around the patient
- Securing IV lines and dressings
- Excluding life threatening conditions

Pain (most common) Hypoxia / Hypotension Hypocarbia/Hypercarbia Differential Hypothermia diagnosis Hypoglycemia Full bladder Raised intracranial pressure

Table 2 PAED scale (from Bajwa and colleagues, with permission. ©2010 Blackwell Publishing Ltd). Score is sum of all values

Behaviour	Not at all	Just a little	Quite a bit	Very much	Extremely
Makes eye contact with caregiver	4	3	2	1	0
Actions are purposeful	4	3	2	1	0
Aware of surroundings	4	3	2	1	0
Restless	0	1	2	3	4
Inconsolable	0	1	2	3	4

The Paediatric Anaesthesia Emergence Delirium (PAED) scale

- A score of ≥ 10 displays 64% sensitivity and 86% specificity.
- A score of >12 yields 100% sensitivity and 94.5% specificity for the diagnosis of ED.

Table 3 Watcha scale. Score is observed values

Behaviour	Score
Asleep	0
Calm	1
Crying, but can be consoled	2
Crying, but cannot be consoled	3
Agitated and thrashing around	4

The Watcha scale

 A child with a score of >2 on the Watcha score can be considered to have emergence delirium.

Table I Cravero scale

Behaviour	Score
Obtunded with no response to stimulation	1
Asleep but responsive to movement or stimulation	2
Awake and responsive	3
Crying (for >3 min)	4
Thrashing behaviour that requires restraint	5

The Cravero scale

A score of ≥ 4 (from crying and difficult to console to wild thrashing) for a 5 or more minute duration despite active calming efforts is regarded as indicative of ED

Preventative strategies

- Non-pharmacological
 - ADVANCE
 - Anxiety reduction
 - Distraction on the day of surgery
 - Video modelling and education
 - Adding parents
 - No excessive reassurance
 - Coaching of parents by staff
 - Exposure/shaping of the child via mask practice
 - Avoid volatile agents

[Intervention Review]

Non-pharmacological interventions for assisting the induction of anaesthesia in children

Anne Manyande¹, Allan M Cyna², Peggy Yip³, Cheryl Chooi^{2,4}, Philippa Middleton⁵

¹School of Psychology, Social Work and Human Sciences, University of West London, London, UK. ²Department of Women's Anaesthesia, Women's and Children's Hospital, Adelaide, Australia. ³Department of Paediatric Anaesthesia, Starship Children's Hospital, Auckland, New Zealand. ⁴Department of Acute Care Medicine, The University of Adelaide, Australia

Contact address: Allan M Cyna, Department of Women's Anaesthesia, Women's and Children's Hospital, 72 King William Road, Adelaide, South Australia, 5006, Australia. allan.cyna@health.sa.gov.au.

Editorial group: Cochrane Anaesthesia, Critical and Emergency Care Group.

Publication status and date: New search for studies and content updated (no change to conclusions), published in Issue 7, 2015.

Citation: Manyande A, Cyna AM, Yip P, Chooi C, Middleton P. Non-pharmacological interventions for assisting the induction of anaesthesia in children. *Cochrane Database of Systematic Reviews* 2015, Issue 7. Art. No.: CD006447. DOI: 10.1002/14651858.CD006447.pub3.

Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Results

Intervention	Results	Difference (95%CI)
Parental presence	No significant differences in child anxiety compared with not having a parent present	Standardized mean difference (SMD) 0.03, 95% CI -0.14 to 0.20
Mask introduction	No significant differences in child anxiety	RR 0.59, 95% CI 0.31 to 1.11
Video of the child's choice was played during induction	Significantly less anxious than controls	mYPAS 31.2, 95% CI 27.1 to 33.3
A video fairytale or Music therapy	No significant differences in co- operation at induction	
Video games before induction	Significantly less anxious at induction	mYPAS mean difference (MD) -9.80, 95% CI -19.42 to -0.18
Clowns/clown doctors and sedative premedication	No significant differences in child anxiety in the operating room between clown VS medication.	mYPAS MD -9.67, 95% CI -21.14 to 1.80

Effect of preoperative visiting operation room on emergence agitation in preschool children under sevoflurane anesthesia

Qiaosheng Zhong^a, Xianfeng Qu^b, Chuanhua Xu^{b,*}

Department of Anesthesiology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, PR China

^a Department of Anesthesiology, Xiamen Changgung Hospital, Xiamen, Fujian 361028, PR China

69 children

(3 to 6 years) tonsillectomy under sevoflurane

Preop Visit OR (Group PV)

Routine preoperative visit (Group RV)

Routine preoperative visit plus propofol (Group RP)

Results

Significantly lower than routine preop visit group

Significantly shorter than routine preop visit plus propofol group

Group	n	PAED score	Incidence of EA	Time to extubation
Preop visit OR Routine visit Routine+propofo P	23 23 3	6.04 ± 2.63 ^a 11.26 ± 3.60 6.30 ± 2.36 ^c < 0.01	5 (21.7%) ^a 17 (73.9%) 5 (21.7%) ^c < 0.05	4.39 ± 0.58 ^b 4.60 ± 0.98 6.47 ± 0.89 ^c < 0.01

presented as mean ± SD. Multiple comparisons using error discovery rate were obtained as follows.

$$a = P < 0.05 PV group vs. RV group;$$

$$b = P < 0.05 PV group vs. RP group;$$

$$c = P < 0.05 RP group vs. RV group.$$

Volatile agents?

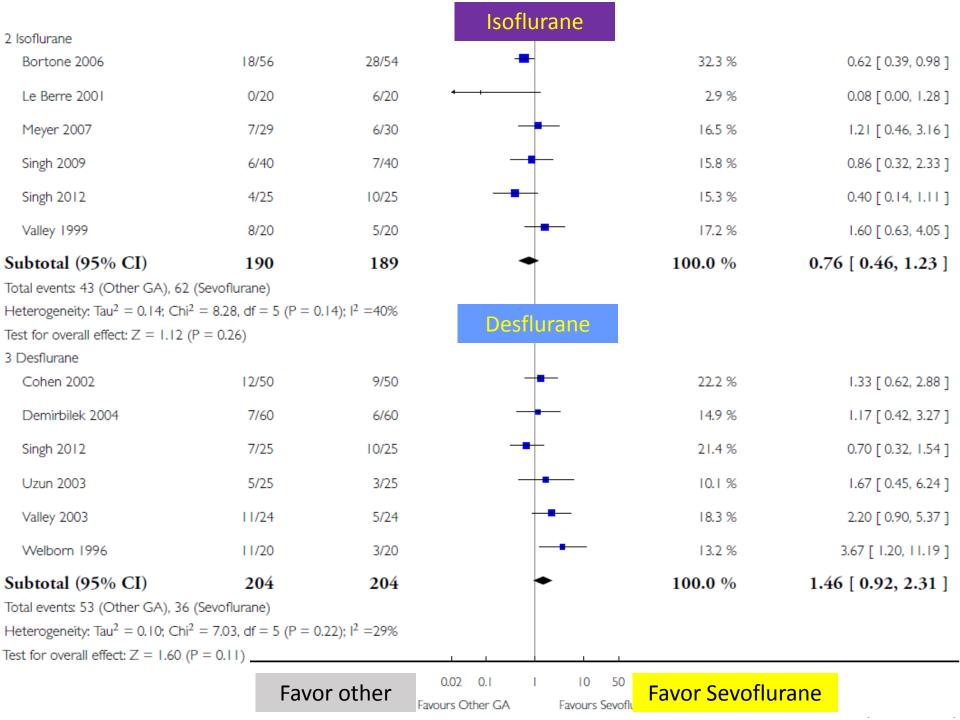
Cochrane Database of Systematic Reviews

Effects of sevoflurane versus other general anaesthesia on emergence agitation in children (Review)

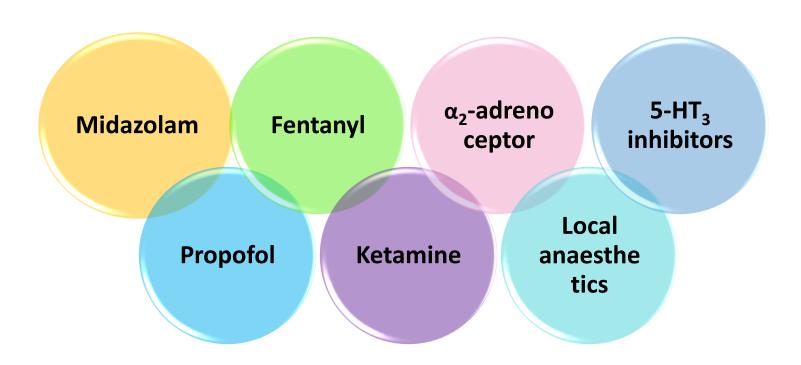
Costi D, Cyna AM, Ahmed S, Stephens K, Strickland P, Ellwood J, Larsson JN, Chooi C, Burgoyne LL, Middleton P

Editorial group: Cochrane Anaesthesia, Critical and Emergency Care Group.

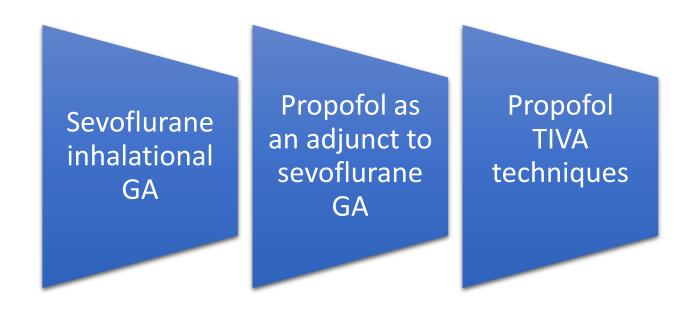
Publication status and date: New, published in Issue 9, 2014.


Citation: Costi D, Cyna AM, Ahmed S, Stephens K, Strickland P, Ellwood J, Larsson JN, Chooi C, Burgoyne LL, Middleton P. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. *Cochrane Database of Systematic Reviews* 2014, Issue 9. Art. No.: CD007084. DOI: 10.1002/14651858.CD007084.pub2.

Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.


Outcome

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Emergence agitation	65		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
1.1 Halothane	34	3534	Risk Ratio (M-H, Random, 95% CI)	0.51 [0.41, 0.63]
1.2 Isoflurane	6	379	Risk Ratio (M-H, Random, 95% CI)	0.76 [0.46, 1.23]
1.3 Desflurane	6	408	Risk Ratio (M-H, Random, 95% CI)	1.46 [0.92, 2.31]
1.4 Propofol induction and	14	1098	Risk Ratio (M-H, Random, 95% CI)	0.35 [0.25, 0.51]
maintenance				
1.5 Propofol maintenance	8	738	Risk Ratio (M-H, Random, 95% CI)	0.59 [0.46, 0.76]
after sevoflurane induction				
1.6 Ketamine anaesthesia	1	20	Risk Ratio (M-H, Random, 95% CI)	0.75 [0.22, 2.52]
1.7 Halothane induction +	1	40	Risk Ratio (M-H, Random, 95% CI)	11.00 [1.56, 77.40]
desflurane maintenance				
1.8 Halothane induction +	1	40	Risk Ratio (M-H, Random, 95% CI)	3.0 [0.34, 26.45]
sevoflurane maintenance			, , , , , , , , , , , , , , , , , , , ,	
1.9 Midazolam anaesthesia	1	140	Risk Ratio (M-H, Random, 95% CI)	0.02 [0.00, 0.39]



Pharmacological prevention

Use of Propofol and Emergence Agitation in Children: A Literature Review

K. Logan Key, CRNA, MSN Christopher Rich, RN, MSN, MHS Claire DeCristofaro, MD Shawn Collins, CRNA, DNP

AANA Journal: December 2010

Study design	Population	Premedication	Analgesia	EA incidence
Sevoflurane only				
Sevoflurane vs propofol induction/halothane maintenance 10	322 children Age 3-12 y Day surgery or ENT surgery	None	Alfentanil, fentanyl, or regional blocks	Sevoflurane 25.7% Propofol/halothane 9.4%
Sevoflurane vs sevoflurane induction, isoflurane maintenance ⁶	128 children Age 1-6 y Subumbilical surgery	None	Penile, caudal, or ilioinguinal/ iliohypogastric block	Sevoflurane 51.8% Sevoflurane/isoflurane 32.1%
Sevoflurane only ²¹	68 children Age 1-6 y Circumcision	Midazolam 0.5 mg/kg, or clonidine 2 or 4 µg/kg	Penile block and rectal paracetamol 30 mg/kg	Midazolam 60% Clonidine 2 µg/kg 40%, 4 µg/kg 25%
Total intravenous anesthesia (TIVA)				
Sevoflurane vs propofol TIVA ¹³	53 children 2-36 mo Ambulatory surgery	None	Fentanyl 2 µg/kg or caudal block	Sevoflurane 23.1% Propofo 3.7%
Sevoflurane vs propofol TIVA ¹⁵	186 children Age 2-11 y ENT surgery	None	Fentanyl 2 μg/kg	Sevoflurane 20%-42% Propofol 5%-11%

The use of a propofol TIVA technique and adjunctive propofol can reduce the incidence of emergence delirium.

•				
	Ionsillectomy		ibuprofen 10 mg/kg, and local infiltration of site	
Sevoflurane vs propofol TIVA ⁹	16 children Age 1-5 y Eye surgery	Midazolam 0.5 mg/kg PO	Acetaminophen 30 mg/kg prn	Sevoflurane 38% Propofol 0%
Propofol as adjunct to sevoflurane				
Propofol 1 mg/kg vs saline ⁵	80 children Age 2-6 y Strabismus surgery	Midazolam 0.5 mg/kg PO	Paracetamol 15 mg/kg IV	Propofo 19.5% Saline 47.2%
Propofol 1mg/kg vs saline ¹⁴	84 children Age 2-7 y MRI	None	Nitrous oxide	Propofo 4.8% Saline 26.8%

Table 3. Emergence Agitation (EA) Studies Divided by Anesthetic Technique With EA Incidence

ENT indicates ear, nose, and throat; PAED, Pediatric Anesthesia Emergence Delirium; MRI, magnetic resonance imaging; prn, as needed; PO, orally; IV, intravenously.

Midazolam

Cochrane Database of Systematic Reviews 2014; Effects of sevoflurane versus other general anaesthesia on emergence agitation in children.

Oral premedication

- No overall reduction in risk of ED
- RR 0.81, 95% CI 0.59-1.12

IV before induction

- No significant difference in PAED score
- PAED score 6.3 VS 7.2

IV at the end of anaesthesia

- Significantly reduced the risk of ED
- RR 0.57 95%CI [0.41,0.81]

Midazolam IV at the end of anaesthesia

Study or subgroup	Adjunct	Control	Risk Ratio M-	Weight	Risk Ratio M-
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl
24 Midazolam IV bolus					
Kim 2011	15/35	26/35	•	64.4 %	0.58 [0.38, 0.89]
Kulka 2001a	9/23	16/23	-	35.6 %	0.56 [0.32, 1.00]
Subtotal (95% CI)	58	58	•	100.0 %	0.57 [0.41, 0.81]
Total events: 24 (Adjunct), 42	(Control)				
Heterogeneity: Tau ² = 0.0; Ch	$ni^2 = 0.00$, $df = 1$ (P	$= 0.94$); $I^2 = 0.0\%$			
Test for overall effect: $Z = 3.1$	8 (P = 0.0015)				

Significantly reduced the risk of emergence delirium

Comparison of the Effects of 0.03 and 0.05 mg/kg Midazolam with Placebo on Prevention of Emergence Agitation in Children Having Strabismus Surgery

Eun Jung Cho, M.D., Seung Zhoo Yoon, M.D., Ph.D., Jang Eun Cho, M.D., Ph.D., Hye Won Lee, M.D., Ph.D.

Midazolam IV before the end of surgery

Results

	Midazolam 0.03 mg/kg (n = 30)	Midazolam 0.05 mg/kg (n = 30)	Saline (n = 30)	<i>P</i> Value
Incidence of emergence agitation* Pediatric anesthesia emergence delirium scale score†	5 (16.7%) 10 (8–17)	5 (16.7%) 10 (8–17)	13 (43.3%) 12 (9–19)	0.024 0.004
No. of patients with pediatric anesthesia emergence delirium score ≥10‡	21 (70%)	19 (63.3%)	28 (93.3%)	0.018
No. of patients with pediatric anesthesia emergence delirium score ≥13§	5 (16.7%)	5 (16.7%)	13 (43.3%)	0.024
Emergence time (min)∥	14.1 ± 3.6	17.1 ± 3.4	12.8±4.1	<0.001

Data are presented as numbers of patients (percentage), median (range), or mean ± SD. Multiple comparisons using false discovery rate were obtained as follows:

0.03mg/kg of midazolam before the end of surgery reduces the incidence of emergence agitation in children having strabismus surgery without delaying the emergence time or causing adverse events.

^{*} Midazolam 0.03 mg/kg vs. saline (P = 0.036), midazolam 0.05 mg/kg vs. saline (P = 0.036), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P = 1).

[†] Midazolam 0.03 mg/kg vs. saline (P = 0.0165), midazolam 0.05 mg/kg vs. saline (P = 0.0165), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P = 1). ‡ Midazolam 0.03 mg/kg vs. saline (P = 0.03), midazolam 0.05 mg/kg vs. saline (P = 0.03), midazolam 0.05 mg/kg vs. saline (P = 0.045), midazolam 0.05 mg/kg vs. midazolam 0.05 mg/kg vs. midazolam 0.05 mg/kg vs. saline (P = 0.045), midazolam 0.05 mg/kg vs. mi

[§] Midazolam 0.03 mg/kg vs. saline (P = 0.036), midazolam 0.05 mg/kg vs. saline (P = 0.036), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P = 0.036), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P = 0.036), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P = 0.036), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P = 0.036), midazolam 0.05 mg/kg vs. saline (P = 0.036), midazolam 0.0

 $[\]parallel$ Midazolam 0.03 mg/kg vs. saline (P=0.385), midazolam 0.05 mg/kg vs. saline (P=0.0003), midazolam 0.03 mg/kg vs. midazolam 0.05 mg/kg (P=0.0009).

Clonidine before induction

7 clonidine trials (767 children);
 Clonidine IV or caudal route 0-45 minutes before induction

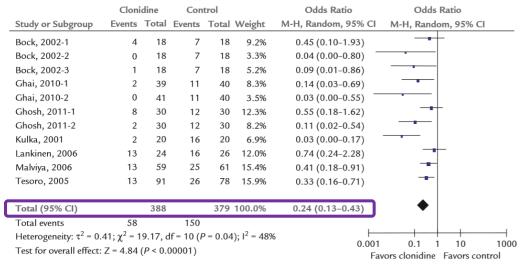


Figure 3. Forest plot of meta-analysis of the effect of prophylactic clonidine for preventing emergence agitation (clonidine, n = 388; control, n = 273). The center of each blue square shown for each study (first author, year of publication) is the odds ratio for individual trials, and the corresponding horizontal line is the 95% CI. The black diamond represents the pooled OR with the 95% CI. Studies with >1 intervention group are numbered as author, year of publication-1; author, year of publication -2; and author, year of publication-3.

Significantly decrease incidence of EA either via intravenous or caudal route

RESEARCH ARTICLE

Meta-Analysis of Dexmedetomidine on Emergence Agitation and Recovery Profiles in Children after Sevoflurane Anesthesia: Different Administration and Different Dosage

Min Zhu¹, Haiyun Wang¹*, Ai Zhu¹, Kaijun Niu², Guolin Wang¹

1 Department of Anesthesiology, Tianjin Research Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China, 2 Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin 300052, China

Dexmedetomidine

Parameters	Risk ratio (95% CI)		Results
Incidence of EA	M-H. 0.37 [0.30, 0.46]	Favours experimental	Decreased incidence of ED
Post-anesthesia nausea and vomiting	M-H. 0.57 [0.38, 0.85]	Favours experimental	Decreased PONV
Emergence time	IV. 1.16 [0.72, 1.6]	Favours control	Delayed emergence time
Time to extubation	IV. 0.61 [0.27, 0.95]	Favours control	Prolonged time to extubation
Time to discharge from recovery room	IV. 2.67 [0.95, 4.39]	Favours control	Delayed time to discharge from recovery room

A total of 1364 patients from 20 prospective RCTs were included in the meta-analysis.

Journal of International Medical Research
2017, Vol. 45(3) 973–983
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0300060517699467
journals.sagepub.com/home/imr

Dexmedetomidine Effect on Emergence Agitation and Delirium in Children Undergoing Laparoscopic Hernia Repair: a Preliminary Study

Yingying Sun^{1,2}, Yuanhai Li², Yajuan Sun¹, Xing Wang¹, Hongwu Ye¹ and Xianren Yuan¹

□ Dexmedetomidine IV after induction 10 min before surgery, continue infusion and stop 3-5 min postoperative

Conclusion

Parameter	Saline (n=24)	0.25 mcg/kg (n=23)	0.5 mcg/kg (n=25)	1.0 mcg/kg (n=25)	
CHIPPS scale	8 (6–9) ^a	6 (5–9) ^a	3 (2–4) ^b	3 (2–4) ^b	< 0.001
5-Point scale	$3(3-4)^a$	3 (2-4) ^a	2 (I-2) ^b	I (I-2) ^b	<0.001
EA frequency	11 (45.8%)	7 (30.4%) ^a	3 (12.0%) ^{ab}	l (4.0%) ^{ab}	0.001
ED frequency	7 (29.1%)	3 (13.0%)	I (4.0%)	I (4.0%)	0.341

Scores are presented as the median (IQR) and were analyzed with the Kruskal–Wallis test and the post hoc Mann–Whitney U test.

Categorical variables are presented as proportions and were analyzed with Fisher's exact test.

Dex: dexmedetomidine; CHIPPS: Children and Infants Postoperative Pain Scale; EA: emergence agitation; ED: emergence delirium.

 $^{^{}a}P < 0.05$ vs. controls

^bP < 0.05 vs. Dex 0.25

Effects of intravenous fentanyl around the end of surgery on emergence agitation in children: Systematic review and meta-analysis

Namo Kim | Jin Ha Park | Jong Seok Lee | Taeyang Choi | Min-Soo Kim

- Included 10 RCT (718 patients)
 - Compared fentanyl (1 mcg/kg) and placebo
 - Sevoflurane inhalation was used for maintenance.
- Children 0-14 years old

Results

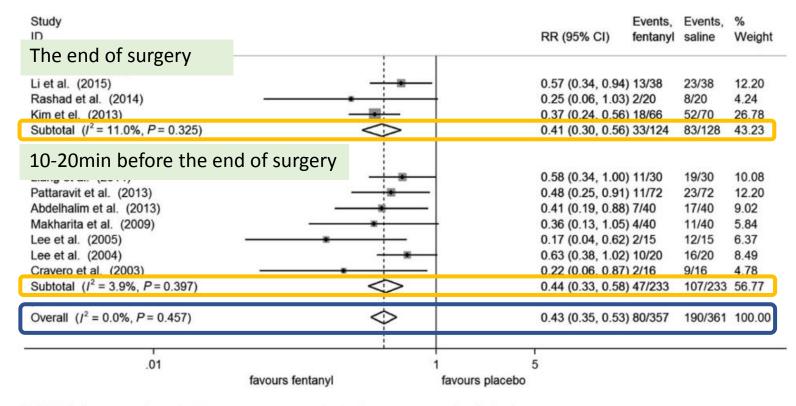


FIGURE 2 Forest plot of incidence of emergence agitation between fentanyl and placebo groups

Fentanyl around the end of surgery significantly decreased EA incidence

Length of PACU stay

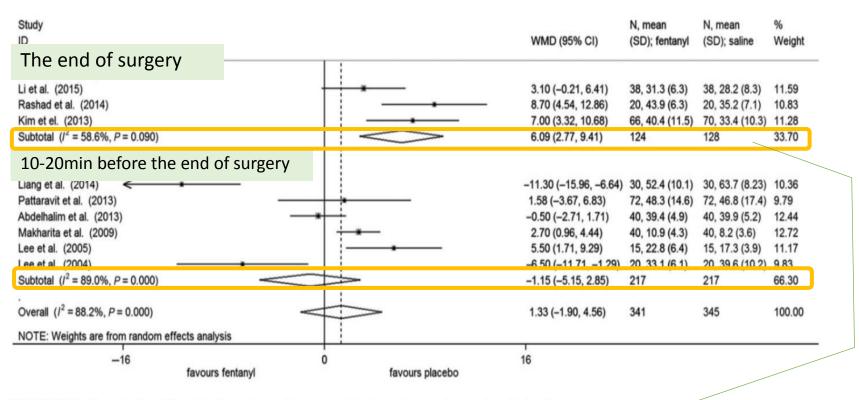


FIGURE 3 Forest plot of length of postoperative care unit stay between fentanyl and placebo groups

Receiving fentanyl at the end of surgery delays PACU stay.

The effect of ketamine on the incidence of emergence agitation in children undergoing tonsillectomy and adenoidectomy under sevoflurane general anesthesia

Yoon Sook Lee, Woon Young Kim, Jae Ho Choi, Joo Hyung Son, Jae Hwan Kim, and Young Cheol Park

Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan, Korea

- 93 children, ASA I-II, 2-14 years old, undergoing adenotonsillectomy.
- Three groups: receiving saline(C), ketamine 0.25 mg/kg (K0.25) or ketamine 0.5 mg/kg (K0.5)
- Administered IV the study drugs 10 minutes before the end of surgery

Result

Katamine gr : lower incidence of ED than control group

No hallucination or nightmare were observed in ketamine gr

Table 5. Pain Score (Modified CHEOPS), and Agitation Score

Group	C (n = 30)	K0.25 (n = 30)	K0.5 (n = 30)
Modified CHEOPS	8.00 (6.00, 9.00)	3.00 (2.00, 6.00)*	2.00 (1.00, 2.00)*,† 17:11:2:0*
Agitation score (1:2:3:4)	1:5:14:10	11:9:8:2*	

Values of modified CHEOPS are median (25%, 75%). Agitation score : 1 = asleep, 2 = awake and calm, 3 = agitated but consolable, 4 = severely agitated and inconsolable. *P < 0.05 compared with the Group C, † P < 0.05 compared with the Group K0.25.

Table 4. Extubation time, Delivery Time, and PONV (Postoperative Nausea, Vomiting)

No significant differences

Group	C (n = 30)	K0.25 (n = 30)	K0.5 (n = 30)
Extubation time (min) Delivery time (min) PONV (1:2:3:4)	10.24 ± 3.66	11.28 ± 3.19	10.69 ± 3.34
	40.00 (40.00, 50.00)	40.00 (40.00, 50.00)	40.00 (36.50, 50.00)
	24 : 4 : 2 : 0	26:0:4:0	23 : 1 : 6 : 0

Values of extubation time are mean \pm SD. Values of delivery time are median (25%, 75%). There are no significant differences among the three groups. PONV scale: 1 = none, 2 = retching, 3 = one episode of vomit, 4 = multiple episode of vomit.

Ketamine and ED

Oral premedication

• Effective intervention with reduction in risk of EA (Abde Imawgoud 2012; Khattab 2009)

Ketamine IV bolus after induction

No reduction in risk of ED compared with placebo (Tsai 2008)

Ketamine 0.25 mg/kg IV bolus at end of anesthesia

• Effective reduction in risk of EA (Abu-Shahwan 2007; Dalens 2006; Lee 2010a)

Which's good?

Preventing Emergence Agitation Using Ancillary Drugs with Sevoflurane for Pediatric Anesthesia: A Network Meta-Analysis

Xin Wang^{1,2} · Qi Deng^{2,3} · Bin Liu² · Xiangdi Yu¹

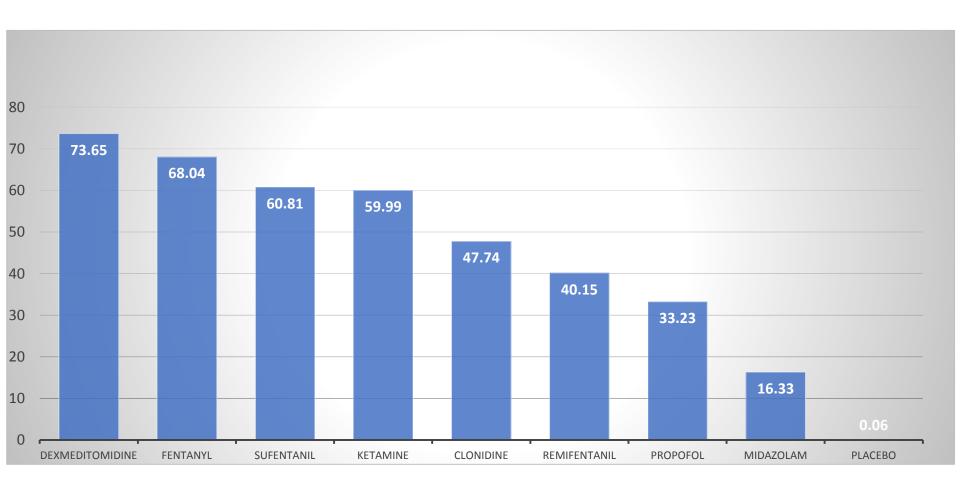

- 67 randomized control trials
- The relative risk of EA associated with eight anesthetic adjuvants was analyzed: ketamine, propofol, dexmedetomidine, clonidine, midazolam, fentanyl, remifentanil, and sufentanil

Table 2 Summary odds ratios of EA and heterogeneity for each direct comparison

Comparison	OR (95 % CI)	P-heterogeneity	I-squared	Tau-squared
Dexmedetomidine vs. placebo	0.34 (0.27, 0.43)	0.697	<0.01 %	<0.001
Fentanyl vs. placebo	0.40 (0.29, 0.54)	0.723	< 0.01 %	< 0.001
Ketamine vs. placebo	0.37 (0.26, 0.52)	0.790	< 0.01 %	< 0.001
Midazolam vs. placebo	0.63 (0.40, 0.99)	0.211	29.90 %	0.092
Clonidine vs. placebo	0.49 (0.28, 0.85)	0.160	37.00 %	0.169
Propofol vs. placebo	0.50 (0.33, 0.77)	0.146	35.40 %	0.126
Remifentanil vs. placebo	0.63 (0.45, 0.87)	0.814	<0.01 %	< 0.001
Sufentanil vs. placebo	0.56 (0.30, 1.02)	0.660	<0.01 %	< 0.001
Fentanyl vs. dexmedetomidine	0.77 (0.38, 1.58)	0.620	< 0.01 %	< 0.001
Ketamine vs. dexmedetomidine	2.00 (0.46, 8.80)	-	-	< 0.001
Midazolam vs. dexmedetomidine	1.28 (0.59, 2.78)	0.303	17.60 %	0.112
Clonidine vs. dexmedetomidine	1.86 (0.67, 5.14)	_	_	0.112
Propofol vs. dexmedetomidine	2.60 (0.85, 7.97)	-	_	0.112
Ketamine vs. fentanyl	1.01 (0.50, 2.06)	0.286	20.70 %	0.118
Clonidine vs. fentanyl	6.00 (0.68, 52.9)	_	_	0.118
Propofol vs. fentanyl	0.50 (0.04, 5.97)	-	-	0.118
Sufentanil vs. fentanyl	1.09 (0.39, 3.08)	0.044	68.00 %	0.569
Midazolam vs. ketamine	1.32 (0.53, 3.30)	-	-	0.569
Propofol vs. ketamine	0.80 (0.16, 4.03)	0.178	44.90 %	0.689
Clonidine vs. midazolam	0.35 (0.13, 0.91)	0.797	<0.01 %	< 0.001
Propofol vs. midazolam	1.13 (0.48, 2.68)	_	-	< 0.001

P value less than 0.05 is considered as significance with italic fonts

Results

• Based on the surface under the cumulative ranking curve (SUCRA) values

Summary

Drugs	Prevention	Treatment
Propofol	TIVA or 1 mg/kg iv at the end of surgery	0.5-1 mg/kg iv
Midazolam	0.03 mg/kg iv at the end of surgery	0.1 mg/kg iv
Fentanyl	1 mcg/kg iv at 10-20 minute before surgery 2 mcg/kg intranasal after induction	1-2 mcg/kg iv
Dexmedetomidine	0.2 mcg/kg iv preoperative 0.3 mcg/kg iv at the end of surgery 0.2-1 mcg/kg/hour intraoperative infusion 1 mcg/kg caudal	0.3 mcg/kg iv
Ketamine	0.25 mg/kg iv preoperative or before the end of surgery	
Magnesium sulphate	30 mg/kg iv bolus then 10 mg/kg/hr infusion	
Dexamethasone	0.2 mg/kg iv before induction	
Clonidine	2-4 mcg/kg iv after induction 4 mcg/kg oral or intrarectal preoperative	
Ketorolac	1 mg/kg iv during surgery	
Gabapentin	15 mg/kg oral preoperative	

Take home message

- Mostly in preschool-children after inhaled anesthetics
- ED must be prevented as a result of risk for self-injury
- Diagnosis: rule out pain and potentially dangerous causes of agitation (hypoxia, hypotension, hypercarbia, hypoglycemia)
- Mostly, resolves over 20 minutes, and requires no treatment other than support, presence of parental, prevention of harm

